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Abstract. Models for coagulation with mass loss arising, for example, from industrial processes in which growing
inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss
laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally
the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the
effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold,
gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial cluster-
size distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the
theory presented herein.
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1. Introduction

Aluminium and its alloys are of increasing importance in many industrial sectors for pack-
aging, transport and construction uses. In recent years, there has been a growing recognition
that in many applications material performance is limited by the presence of micrometre-
sized, insoluble inclusions that are introduced into the molten metal by melting and refining
processes which are conducted prior to the casting of ingots or components; for examples see
[1] and [2]. Critical properties of, for example, ultra-thin foil and thin strip for the packaging
industry can be adversely affected by the presence of such non-metallic inclusions.

In the production of aluminium alloys, molten metal is held in a furnace for periods of up to
several hours before it is cast. At this stage, sub-micrometre-sized particles of the insoluble,
high-melting-point chemical compound titanium diboride (TiB2) are added for the purpose
of efficiently nucleating solid aluminium during subsequent solidification and casting [3].
However, whilst the melt is held in the furnace, these TiB2 particles can both agglomerate and
also be lost from the melt by attachment to the furnace walls. Both processes are extremely
undesirable, and practical steps taken to minimise agglomeration and loss, or to remove coarse
agglomerates, lead to significantly increased manufacturing costs. Although there have been
considerable advances in the capability to measure inclusion content and size distribution in
molten aluminium, for example see [4], there is still a lack of understanding of the kinetics of
coagulation in this system. It is in this context that the present study was undertaken.

Over recent years, generalised forms of Smoluchowski’s coagulation equations have been
developed to model the size-evolution of clusters of particles in such systems. Leyvraz and



114 J.A.D. Wattis et al.

Tschudi [5] have noted that the coagulation equations without mass loss could be solved
exactly if the coagulation rates were given by one of two special kernels, that is a function
which specifies how the rate of coagulation depends on the size of the aggregating clusters.
The solvable cases which they describe are the size-independent kernel ai,j = a and the size-
dependent kernel ai,j = a(i + j). Our approach originally outlined in [6] uses generating
functions, and delivers explicit solutions more simply. This method has been extended to
model situations with mass addition [7] and mass loss through direct interaction between
clusters and the gel [8].

Singh and Rodgers [9] considered aggregation processes which occur simultaneously with
mass loss in the framework of a continuous model. They consider the scenario where oxid-
ation, melting or evaporation occur on the exposed surface of clusters, and hence take the
mass-loss term to have the form − ∂

∂j
(m(j)c(j, t)), where c(j, t) or cj (t) denotes the concen-

tration of clusters of size j at time t . Hendriks [10] also considers aggregation with mass loss,
but only when the aggregation kernel has the form ai,j = aij ; this is the classic kernel which
allows gelation and an exact explicit solution in the case of pure coagulation. The mass-loss
term used by Hendriks has a similar form to that used by us, namely, Lj = Acj + Bjcj in
the notation introduced later on. Finally, we should note the work of Rotstein et al. [11] in
which a mass-loss term is introduced in the monomer equation. In a similar way to the more
general loss term we consider, their term can delay or totally prevent gelation in the case of
the coagulation kernel which permits gelation to occur; they analyse how the amount of gel
formed depends on the strength of the rate of mass removal.

1.1. MODEL

We use Ck to denote a cluster composed of k monomers. The kinetics of the standard Smolu-
chowski agglomeration process

Ci + Cj → Ci+j , rate = ai,j (1.1)

with aggregation rate ai,j can be modelled by defining the concentration of Cj to be cj (t).
Using the law of mass action we then obtain

dcj (t)

dt
= 1

2

j−1∑
i=1

ai,j−i ci(t)cj−i (t) −
∞∑
i=1

ai,j ci(t)cj (t). (1.2)

Deriving the second sum is more straightforward than the first; it comes from the fact that a
cluster Cj can combine with a cluster Ci of any size 1 ≤ i < ∞ as described by (1.1). Thus
we sum over all i to obtain the rate at which Cj clusters are lost due to aggregation. The first
sum in (1.2) comes from the rate at which Cj clusters are created by the coalescence of smaller
clusters through Ci +Cj−i → Cj . The factor of one half is present to prevent double counting
of this process. Since matter is neither created nor destroyed in the coagulation process, we
expect the total number of monomers in the system M1 = ∑∞

j=1 jcj to be time-independent.
As a check of (1.2), M1 can be shown formally to be a constant. More details about this
calculation are given at the start of Section 2.3. To the standard Smoluchowski coagulation
equations (1.2) we add a mass-loss term of the form Cj → φ with rate Lj (cj ); hence we
obtain the system of equations

dcj (t)

dt
= 1

2

j−1∑
i=1

ai,j−i ci(t)cj−i (t) −
∞∑
i=1

ai,j ci(t)cj (t) − Lj (cj (t)). (1.3)
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In the model of interest to Gudmundsson [12] the clusters are micrometre-sized non-
metallic inclusions (TiB2) in molten aluminium and the aggregation rates are determined by
ai,j = (Ri+Rj)(Di+Dj). Here Ri is the radius of a sphere with volume iV0 for some element
of volume V0, thus Ri ∝ i1/3; Di is the corresponding diffusion constant, with Di ∝ 1/Ri .
This corresponds to the continuum regime of Brownian coagulation. Many other kernels have
been used to model aggregation processes, see [13] for examples. In the process analysed by
Gudmundsson, mass is lost by removal of particles from the melt by transfer to the walls of
the holding furnace for the molten metal. This occurs at a rate Lj (cj (t)) = Ljλcj (t) for some
L and λ = 2/3.

We shall consider a more general problem, in which λ is not constrained to 2/3, but could
take any value, and in which the coagulation kernel has the form ai,j = aiαjα(iβ + jβ). This
covers the integrable cases ai,j = a (α = β = 0), as well as ai,j = a(i + j) (α = 0, β = 1),
and ai,j = aij (α = 1, β = 0). The Brownian kernel of Gudmundsson corresponds to a
combination of the constant kernel ai,j = a and the case α = −1/3, β = 2/3.

We thus have the system of equations

dcj (t)

dt
= 1

2

j−1∑
i=1

ai,j−i ci(t)cj−i (t) −
∞∑
i=1

ai,j ci(t)cj (t) − Ljλcj (t), (1.4)

which models the simultaneous aggregation and mass-loss processes. It is the presence of a
mass-loss term which is novel in the current study of the coagulation equations. We describe
cases in which information about the solution can be derived exactly and explicitly; this corres-
ponds to the case λ = 0, where the generating-function approach yields a complete solution.
The existence of a closed-form exact solution to such a complicated system of equations is
remarkable, and the solution for λ > 0 will share many properties of the solution for λ = 0.
We then examine the case of general λ in more detail, by use of large-time asymptotic meth-
ods, and by assuming the existence of a self-similar solution, which enables various scaling
behaviours of the solution to be elucidated. In the analysis of gelation in a truncated version
of Smoluchowski’s coagulation equations, da Costa derived an equation of the form (1.4),
namely Equation (10) of [13]; however, there L < 0 corresponding to a mass gain term, and
the second sum has an upper limit of i = N in place of i = ∞. Similarity solutions of the
form derived below should still be applicable in this case; however, the derivations of exact
explicit solutions for the three integrable coagulation kernels will be complicated by the finite
sum.

The paper is split into five sections. In the next section we derive exact explicit solutions
for models where these are available. Section 3 describes the similarity solutions which the
system may approach in the large-time limit. A more general approach to the fitting of exact
solutions to experimental data and numerical simulations is described in Section 4. The paper
concludes with a summary and discussion of the results.
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2. Explicitly solvable models

2.1. SIZE-INDEPENDENT AGGREGATION RATES

The special case of the parameters being given by ai,j = a, λ = 0 is exactly solvable, this
corresponds to the system

dcj

dt
= 1

2

j−1∑
i=1

acicj−i −
∞∑
i=1

acicj − Lcj . (2.1)

We introduce the generating function C(z, t) = ∑∞
j=1 cj (t)e−jz, which transforms the system

of ordinary differential equations (2.1) to

∂C

∂t
= 1

2aC2 − C(L + aM0(t)), (2.2)

where M0(t) = C(0, t) is the total number of clusters in the system. This quantity satisfies

dM0

dt
= − 1

2M0(aM0 + 2L), (2.3)

and so is given by

M0(t) = 2L�e−Lt

2L + a�(1 − e−Lt )
, (2.4)

where we have assumed monodisperse initial conditions

cj (0) = 0, for j > 1 c1(0) = �. (2.5)

These conditions imply C(z, 0) = �e−z; hence we solve (2.2) to find

C(z, t) = 4�L2e−Lt

(2L + a�(1 − e−Lt))2

(
2L + a�(1 − e−Lt )

2Lez + a�(1 − e−Lt)(ez − 1)

)
(2.6)

for the generating function C(z, t) and the concentrations cj (t) are then given by

cj (t) = 4�L2e−Lt

(2L + a�(1 − e−Lt))2

(
a�(1 − e−Lt)

2L + a�(1 − e−Lt)

)j−1

. (2.7)

This solution is illustrated in Figure 1. We see that, at small times, aggregation is dominant,
which rapidly creates an appreciable number of clusters of larger size. At larger times, there is
a slower decrease in the concentration of clusters of all sizes. For large cluster sizes (j � 1),
the maximum concentration occurs at

tc(j) ∼ 1

L
log

(
(2L + a�)j

2L

)
. (2.8)

For larger times the solution (2.7), can be approximated by

cj (t) ∼ 4L2e−Lt

a(2L + a�)

(
a�

2L + a�

)j

, (2.9)
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Figure 1. Figure of the exact solution (2.7), log cj (t) is plotted against size j and time t , for 1 ≤ j ≤ 10 and
0 < t < 4 for the case � = 1, L = 1, a = 1.

which corresponds to the late-time depletion of all clusters by loss predominantly due to the
explicit mass-removal term, that is, loss to the walls of the container.

From such a solution other quantities of interest may be found, for example, the first few
moments are given by Equation (2.4) and

M1(t) = � e−Lt , M2(t) = �e−Lt
(

1 + a�

L
(1 − e−Lt )

)
, (2.10)

since

M1(t) = −∂C

∂z
(0, t), M2(t) = ∂2C

∂z2
(0, t). (2.11)

This agrees with the experimental results of Gudmundsson [12] where he observes a decay
in the total volume of the material which is exponential. The average cluster size is given by
either M1/M0, or M2/M1; these give similar expressions

M1

M0
= 1 + a�

2L
(1 − e−Lt),

M2

M1
= 1 + a�

L
(1 − e−Lt ). (2.12)

Initially, both give unity, since all material starts in clusters of unit size; as time progresses,
the former rises steadily to 1 + a�/2L, while the latter approaches 1 + a�/L. A measure of
the spread of the distribution can be gained from the polydispersity

M2M0

M2
1

= 1 + a�(1 − e−Lt)

2L + a�(1 − e−Lt )
. (2.13)

This quantity is initially equal to one, indicating a monodisperse system and rises to 1 +
a�/(a� + 2L) in the large-time limit.

2.2. SIZE-DEPENDENT AGGREGATION RATES

In the case ai,j = a(i + j) the coagulation equations have the form

dcj

dt
= 1

2a

j−1∑
i=1

jcicj−i − acj

∞∑
i=1

(i + j)ci − Lcj . (2.14)
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We use the same generating function as earlier (C(z, t) =
∞∑

j=1
cj (t)e−jz), to rewrite the above

as

∂C

∂t
= a

∂C

∂z
(M0 − C) − aM1C − LC, (2.15)

subject to the initial data (2.5), which imply C(z, 0) = �e−z. The mass and number in the
system are then governed by

dM1

dt
= −LM1,

dM0

dt
= −M0(aM1 + L), (2.16)

which are solved by

M1(t) = �e−Lt , M0(t) = � exp
(
−Lt − a�

L
(1 − e−Lt)

)
. (2.17)

As with the size-independent kernel, this confirms the exponential decay of the total mass in
the system; however, this solution is based on λ = 0 and not λ = 2/3, as was assumed by
Gudmundsson. The above solutions for M0 and M1 allow solving (2.15) by the method of
characteristics, which gives the implicit solution

−z = log
C

�
+ Lt + a�

L
(1 − e−Lt) + (2.18)[

1 − exp
(
−a�

L
(1 − e−Lt)

)] [
1 − CeLt

�
exp

(a�

L
(1 − e−Lt)

)]
.

This is inverted by use of Lagrange’s expansion (see [14, Equation 3.6.6]), which yields

cj (t) = �jj−1

j ! e−Lt−T (1 − e−T )j−1e−j (1−e−T ) (2.19)

= �e−Ltj j−1

j ! T̂ j−1e−j T̂ (1 − T̂ ),

where T = (�a/L)(1 − e−Lt) and T̂ = 1 − e−T . This solution is illustrated in Figure 2.
The second moment can also be determined, from dM2/dt = 2aM1M2 − LM2, we find

M2(t) = �e−Lt exp

(
2a�

L
(1 − e−Lt)

)
. (2.20)

There are then two ways of defining the typical size of a cluster in the system, which give very
similar expressions

M2

M1
= exp

(
2a�

L
(1 − e−Lt )

)
,

M1

M0
= exp

(a�

L
(1 − e−Lt)

)
, (2.21)

and the polydispersity of the system (which is related to the variance of the cluster size
distribution) is given by

M2M0

M2
1

= exp
(a�

L
(1 − e−Lt)

)
. (2.22)



Coagulation equations with mass loss 119

Figure 2. Figure of the exact solution (2.19), log cj (t) is plotted against size j and time t , for 1 ≤ j ≤ 10 and
0 < t < 4 for the case � = 1, L = 1, a = 1.

All these formulae assume that the initial conditions are monodisperse, that is, given by (2.5).

2.3. THE GELLING KERNEL

A natural question to ask is whether the presence of the explicit mass-loss term alters gelation.
In the absence of a mass-loss term (that is, if L = 0), the system (1.2) satisfies

djcj

dt
= Jj−1 − Jj , where Jj =

j∑
k=1

∞∑
n=j+1−k

kan,kcnck. (2.23)

Formally, we have dM1/dt = − limN→∞ JN . If this limit is zero, mass is conserved and, if
it is non-zero, the system loses mass to a cluster of infinite size, known as the ‘superparticle’
or the ‘gel’. Intuitively we expect that, for large enough λ (or L), the shape of the cluster-size
distribution will be altered at large sizes, and so gelation could be prevented; however, for
small (possibly negative) λ or small L, the mass-loss term may have no effect on gelation.
In the case λ = 0 the system is once again exactly explicitly solvable as we now show. The
generating function in this case reduces the differential-difference equation

dcj

dt
= 1

2

j−1∑
i=1

ai(j − i)cicj−i − ajcj

∞∑
i=1

ici − Lcj (2.24)

to

∂C

∂t
= 1

2a

(
∂C

∂z

)2

+ aM1
∂C

∂z
− LC, (2.25)

with initial data C(z, 0) = �e−z. Defining u = −∂C/∂z we find the partial differential
equation

∂u

∂t
+ a(u − M1(t))

∂u

∂z
= −Lu. (2.26)
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2.3.1. Pre-gel behaviour
Equations governing the number and mass of clusters can be found by putting z = 0 into
(2.25) and (2.26). This leads to

dM1

dt
= −LM1,

dM0

dt
= − 1

2M
2
1 − LM0, (2.27)

which have the solutions

M1(t) = �e−Lt , M0(t) = �e−Lt
(

1 − a�

2L
(1 − e−Lt )

)
. (2.28)

These formulae are only valid in the pre-gelation stage of the process. The partial differen-
tial equation (2.26) is solved by the method of characteristics, leading to

z = log � − log u − Lt + au

L
(eLt − 1) − a

∫ t

0
M1(s) ds. (2.29)

In the pregel phase, M1 is given by (2.28) and so we find

e−z = ueLt

�
exp

(
−aeLt

L
(1 − e−Lt )(u − �e−Lt)

)
, (2.30)

which can be inverted using Lagrange’s expansion, yielding

cj (t) = �jj−2e−Lt

j !
(

�a(1 − e−Lt)

L

)j−1

exp

(−�aj (1 − e−Lt )

L

)
, (2.31)

or cj (t) = �e−Ltj j−2T j−1e−jT /j ! where T = �a(1 − e−Lt)/L. Note that this new time
variable satisfies T → a�/L as t → ∞. In the limit L → 0 with � = a = 1, this reduces to
the classical solution pre-gelation solution, cj (t) = jj−2tj−1e−j t /j !, where gelation occurs at
t = tg = 1. Thus in the general solution for L �= 0, gelation occurs at Tg = 1. So if L > �a

then gelation is prevented by the mass-loss term since T = 1 is never reached, even in the
limit t → ∞, whereas for L < �a gelation is merely delayed from tg = 1/�a to

tg = − 1

L
log

(
1 − L

a�

)
. (2.32)

For small L this asymptotes to tg ∼ (1/�a)(1 + L/2�a); and tg → ∞ as L → �a.
For general initial data, information on the gelation behaviour of the system can be gained

from the second moment. Here we shall not assume that the initial conditions are monod-
isperse, rather we assume that M1(0) = � and M2(0) = µ. The second moment is determined
by dM2/dt = aM2

2 −LM2 which shows that, for sufficiently large L, the possibility of gelation
may be removed. The solution for M2(t) is

M2(t) = µL

aµ + [L − aµ]eLt
. (2.33)

In the pre-gel regime the typical cluster size is given by

M1

M0
= 2L

2L − a�(1 − e−Lt)
,

M2

M1
= Lµ

L� − a�µ(1 − e−Lt )
, (2.34)
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and the polydispersity by

M2M0

M2
1

= 2Lµ − a�µ(1 − e−Lt )

2L� − 2a�µ(1 − e−Lt)
. (2.35)

The gel-point occurs at the time at which the second moment diverges (that is M2 → ∞
as t → tg), which implies

tg = − 1

L
log

(
1 − L

aµ

)
. (2.36)

Thus gelation only occurs if µ > L/a. There is an interesting issue about the sensitive
dependence of gelation to initial data: for example, one can perturb the monodisperse initial
data (2.5) by adding in a small concentration (of order ε � 1) of one particular very large
cluster size (size j ∼ 1/

√
ε). This makes an O(ε) difference to the total number of clusters at

time t = 0, an O(
√

ε) difference to the mass of the system at t = 0, but at O(1) difference
to the second moment of the system. Thus this perturbation can make the difference between
a solution undergoing gelation and not. Thus, when analysing cluster size-distributions, it is
important to use a measure or norm which takes account of the second moment.

2.3.2. Post-gel behaviour
As the gel-point is approached (t → tg), a singularity develops, namely uz → −∞ at z = 0;
this corresponds to the divergence in the second moment, M2(t). The post-gel solution is
characterised by persistence of the singularity in uz at z = 0. By differentiating (2.29) with
respect to z we find

∂u

∂z
= Lu

au(eLt − 1) − L
, (2.37)

and so, substituting z = 0 in this, we find

M1(t) = u(0, t) = L

a(eLt − 1)
for t > tg. (2.38)

It can be checked that at t = tg the formula (2.38) gives M1 = � − L/a as does (2.28); thus
M1 is continuous across the gel-point t = tg .

We now return to (2.29) with M1(t) given by (2.28) for t < tg and by (2.38) for t > tg . In
this latter region we then find

e−z = eau

L
(eLt − 1)e−au(eLt−1)/L, (2.39)

and applying Lagrange’s expansion once again, we obtain

cj (t) = Ljj−2e−j

aj !(eLt − 1)
. (2.40)

Thus, as j → ∞, we have the usual post-gel algebraic decay in cluster size with cj ∼
L/

√
2πaj 5/2(eLt − 1). Note that: (i) this formula and (2.40) are independent of the initial

mass in the system, �; (ii) (2.40) is a similarity solution of separable form, cj (t) = fj/τ(t);
and, (iii) from (2.40) we determine the number of clusters in the post-gel regime. At t = tg
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Figure 3. The exact solution (2.31) for t < tg and (2.40) for t > tg ; log cj (t) is plotted against size j and time t

for 1 ≤ j ≤ 10 and 0 < t < 4; on the left for � = 2, L = 1, a = 1, so that the gel-time tg = log 2; on the right
for � = 1, L = 1, a = 1, so that there is no gelation (tg = ∞).

Equation (2.28) implies M0(tg) = �(1 − L/a�)/2, which can then be used as initial data for
the ordinary differential equation for M0(t) in (2.27) to yield the post-gel solution

M0(t) = L

2a(eLt − 1)
, t ≥ tg. (2.41)

A gelling solution is illustrated in Figure 3, where the gel-time is log 2.
A natural question to consider in this scenario is how much of the initial mass ends up in the

gelled form and how much is removed by the explicit mass-loss term, and so ends up adhered
to the wall. To analyse this, we introduce two new quantities: W(t) is the mass adhered to the
wall, and G(t) the mass in the gel. Thus we have M1(t) + G(t) + W(t) = � independent
of time. In the pre-gel phase, G = 0, W = � − M1; and, as t → ∞, M1 → 0, so in the
large time limit we have G + W = �. We also have dW/dt = ∑∞

j=1 Ljλ+1cj , which, in the
case of λ = 0, simplifies to dW/dt = LM1. In the pre-gel phase of the reaction, integrating
dW/dt = LM1 yields

W(t) = (�/L)(1 − e−Lt), (t ≤ tg); (2.42)

thus, at the gel-point we have W(tg) = L/a (assuming monodisperse initial data (2.5)).
Integrating dW/dt = LM1 in the post-gel phase, where M1(t) is given by (2.38), yields

W(t) = L

a

(
1 + log(1 − e−Lt) − log

(
L

a�

))
, (t ≥ tg). (2.43)

Thus, ultimately the mass deposited on the wall and in the gelled form is given by

W∞ = L

a

(
1 − log

(
L

a�

))
, G∞ = � − W∞, (2.44)

provided L < a�. If L ≥ a�, the mass-loss term prevents gelation, and so all mass eventually
ends up on the wall. Thus, if we look at the proportion of mass adhering to the wall (
 =
W∞/�) as a function of the nondimensional parameter group L/a�, we have the function


(L/a�) =
{

(1 − log(L/a�))L/a�, L/a� < 1,

1, L/a� ≥ 1,
(2.45)
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Figure 4. Graph of proportion of mass ultimately adhered to the wall against the dimensionless parameter L/a�

which indicates the rate of loss of matter from the system.

which is continuous and has a continuous first derivative, but has a discontinuous second
derivative. To illustrate this, we consider values of L/a� close to unity, we put L/a� = 1 − ε

with 0 < ε � 1 and then find that 
 ∼ 1 − 1
2ε

2. Thus 
 rises from zero at L = 0 to its upper
limit at L/a� = 1 where we obtain 
 = 1 as shown in Figure 4.

3. Similarity solutions

The existence of similarity solutions to the Smoluchowski coagulation equations has been
the subject of much study, analytically, by Kreer and Penrose [15] and da Costa [16] and by
asymptotic methods, for example, by Hendriks et al. [17], and more recently by Davies et al.
[6]. Gudmundsson [12] speculated on the existence of similarity solutions to the mass-losing
coagulation equations. Here we show that such solutions may exist in the case λ < 0.

3.1. SIZE-INDEPENDENT AGGREGATION RATES

For ai,j = a, we seek a solution of the form cj (t) = tγ f (η) where η = j tβ is the similarity
variable. We substitute the ansatz in Equation (1.4), and find that all terms balance, provided
β = 1/λ, γ = 1/λ − 1. Since β should be negative, we require λ also to be negative for
a similarity solution of this form to exist. Such a scaling satisfies the density conservation
equation dM1/dt = −LMλ+1 since M1 ∼ O(tγ−2β), and Mλ+1 ∼ O(tγ−(λ+2)β). From such
calculations we find

M0(t) = 
0t
−1, M1(t) = 
1t

−1−1/λ, M2(t) = 
2t
−1−2/λ, (3.1)

where 
k = ∫ ∞
η=0 ηkf (η) dη, and so if M1 is to be well-defined we require λ < −1. The

average cluster size, which is given by M1/M0 or M2/M1, increases according to t−1/λ. The
polydispersity M2M0/M

2
1 is constant (independent of time) once the similarity solution has

been approached. With λ < 0, smaller clusters are removed at a faster rate than larger ones, so
that the total number of clusters decays faster than the mass in the system, and higher moments
diverge more rapidly, leading to a cluster-size distribution in which higher moments, cease to
exist.
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The function f (η) satisfies

(1 − λ)

λ
f + η

λ

df

dη
= 1

2a

∫ η

0
f (ξ)f (η − ξ) dξ − a
0f − Lηλf, (3.2)

where 
0 = ∫ ∞
0 f (ξ) dξ . Unfortunately, in general, such equations are not solvable; however,

for large and small η, asymptotic approximations for f (η) are available.
For small η the leading-order balance is between the rate of change term, ηf ′(η)/λ, and

the mass-loss term, Lηλf (η). This gives the expression f (η) ∼ e−Lηλ

. A correction term can
be calculated by substituting f (η) = e−Lηλ

g(η) in (3.2). This leads to(
1

λ
− 1

)
g + η

λ

dg

dη
+ a
0g = 0 (3.3)

at the next order of accuracy, the convolution being much smaller than these terms. This
expression is solved by g(η) = Aηq for some amplitude A and exponent q given by q =
λ − 1 − λa
0. Thus we have the expression

f (η) ∼ Aηλ−1−λa
0e−Lηλ

, for η � 1, (3.4)

and

cj (t) ∼ Ajλ−1−λa
0t−a
0e−Ljλt , (3.5)

as t → ∞ and for j � t−1/λ.
For large η, the leading-order balance is between the creation of new clusters as described

by the convolution term, the loss by coagulation and the rate of change terms, from which we
have

η

λ

df

dη
+

(
1

λ
− 1 + a
0

)
f = a

∫ η/2

0
f (ξ)f (η − ξ) dξ. (3.6)

If we assume f (ξ) is given by the small-argument asymptotic expansion (3.4) and all the other
occurrences of f are given by the large-η asymptotic expansion f (η) ∼ Bηq for some B, q

then we find that all the terms on the left-hand side of (3.6) balance with the contribution to
the integral from the small-ξ range, and that this places no restrictions on the values of B or
q. Considering now the part of the integral where ξ ∼ η, we find that, to balance all terms, we
require q = −1 and then

a
0 = 1
2aB

∫ 1

0

dx

x(1 − x)
, (3.7)

where the divergences at the end-points of the integral can be ignored, since an alternative
expression for f should be used there, namely (3.4). Thus, for large η we have

f (η) ∼ B/η, as η → +∞, (3.8)

and therefore cj ∼ B/jt as t → ∞ with j � t−1/λ.
For the coagulation kernel suggested by Gudmundsson, namely ai,j = 2+ (i/j)ω + (j/i)ω

with ω = 1/3, the scalings for a similarity solution are exactly the same as for the constant
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kernel ai,j = a. The equation for the self-similar function f (η) is, however, different, and so
has different large- and small-η asymptotics:

η

λ

df

dη
+

(
1

λ
− 1

)
f + Lηλf + a

(
2
0 + ηω
−ω + η−ω
ω

)
f

= 1
2a

∫ η

0
f (ξ)f (η − ξ)

[
2 +

(
η − ξ

ξ

)ω

+
(

ξ

η − ξ

)ω]
dξ. (3.9)

Hence

f (η) ∼ Aηq exp

(
−Lηλ + λa
ω

ωηω

)
as η → 0+ (3.10)

for some exponent q and some amplitude A; whilst

f (η) ∼ Bηω−1 for η � 1, (3.11)

for some constant B.

3.2. SIZE-DEPENDENT AGGREGATION RATES

For ai,j = a(i + j) the coagulation equations have the form

dcj

dt
= 1

2a

j−1∑
i=1

jcicj−i − acj

∞∑
i=1

(i + j)ci − Ljλcj . (3.12)

Assuming cj (t) = tγ f (j/tβ) we find γ = 2/λ − 1, β = −1/λ, and f (η) is determined by(
2

λ
− 1

)
f + η

λ

df

dη
+ Lηλf (η) + a
1f (η) + a
0ηf (η)

= 1
2aη

∫ η

0
f (ξ)f (η − ξ)dξ. (3.13)

The regime η = O(1) corresponds to j = O(t−1/λ), and in general cannot be solved.
In the large-time limit, for λ > 0, it is the small-η limit which is of interest, since this

corresponds to aggregation sizes j � t−1/λ. As only a little mass gets into the large cluster
sizes before being removed from the system, knowledge of the behaviour of such smaller
cluster sizes is more important in physical applications. Thus, we consider in more detail
the small-η asymptotic solution of (3.13). At leading order the balance is between ηf ′/λ
and Lηλf , which produces the solution f = e−Lηλ

as in the case of the size-independent
coagulation kernel. The first correction term, however, differs; we substitute f = e−Lηλ

g(η)

to determine the prefactor of the exponent, and obtain the equation(
2

λ
− 1 + a
1

)
g + η

λ

dg

dη
= 0, (3.14)

This implies g(η) ∼ ηλ−2−λa
1, and we thus have

f (η) ∼ Aηλ−2−λa
1e−Lηλ

for η � 1. (3.15)
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The asymptotic solution for cj (t) is then

cj (t) = Ajλ−2−aλ
1t−a
1e−Ljλt as t → ∞ with j � t−1/λ. (3.16)

For completeness, we quote the large-η asymptotics; due to the nonlocal nature of (3.13),
isolating the large-η asymptotics is not straightforward. At large η, the dominant terms govern
the formation of clusters by the integral term, and the loss by collision with other clusters,
thus from (3.13) we aim to solve

a
0ηf = 1
2aη

∫ η

0
f (ξ)f (η − ξ) dξ, (3.17)

for which f (η) = Bηq appears to be a solution for q = −1 and B = 2
0/
∫ 1

0 (x(1−x))−1 dx.
However, this integral is divergent. The solution f (η) = Bη−1 remains, since the divergence
is caused by integrating the function f (ξ) near ξ = 0, where f is not given by Bξ−1 but by
(3.15) instead. With this modification, the solution f (η) = Bη−1 remains valid for large η,
but the expression for B cannot be evaluated without knowing f (η) across the whole range of
values from η = 0 up to large η. Large η corresponds to j � t−1/λ and so we have

cj (t) ∼ B

jt1−1/λ
as t → ∞ with j � t−1/λ. (3.18)

3.3. GELLING KERNEL

For ai,j = aij we have seen that there is a gelation point if λ = 0 and L < aM2(0), and in
this case, the post-gel solution corresponds to a similarity solution; from (2.40) we see that the
appropriate scalings are cj (t) = fj/(eLt − 1). When λ < 0 the loss is predominantly taken
from smaller cluster sizes, with larger cluster sizes having smaller loss rates. Since gelation
occurs due to the very slow decay of concentrations with increasing cluster size, loss rates with
negative λ will not prevent the formation of a distribution function with a slowly decaying tail.
Thus, with small L, and large M2(0) gelation should still occur, and we expect the post-gel
solution to have the form of a similarity solution.

Assuming cj (t) = tγ f (j tβ), we find a similarity solution, provided β = 1/λ and γ =
3/λ − 1. The form of f (η) is then given by

η

λ

df

dη
+ Lηλf (η) + (3λ − 1)f (η) + a
1ηf (η)

= 1
2a

∫ η

0
ξf (ξ)(η − ξ)f (η − ξ) dξ. (3.19)

A solution of this equation is not available explicitly; however, some properties of the solu-
tion can be deduced by considering the small- and large-η behaviour of a solution. Also, the
behaviour of certain quantities can be derived, for example

M0(t) ∼ t2/λ−1
∫ ∞

0
f (η) dη, M1(t) ∼ t1/λ−1

∫ ∞

0
ηf (η) dη. (3.20)

For small η, the leading-order balance is between the rate-of-change term ηf ′(η)/λ and the
loss term Lηλf (η), leading to f (η) = g(η)e−Lηλ

as in previous cases. The correction term is
then determined by solving(

3

λ
− 1

)
g + η

λ

dg

dη
= 0, (3.21)
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the convolution term being smaller than these retained terms. From the above equation we
find g(η) = Aηλ−3 and we have

cj (t) ∼ Ajλ−3e−Ljλt as t → ∞ for j � t−1/λ, (3.22)

for some constant A.
For large η, the leading-order balance is

a
1ηf = 1
2a

∫ η

0
ξf (ξ)(η − ξ)f (η − ξ) dξ, (3.23)

that is, between for the formation of clusters of scaled size η by coagulation and the loss by
coagulation. This leads to the asymptotic expression f (η) ∼ B/η2 for some constant B. Thus,
we have

cj (t) ∼ B

j 2t1−1/λ
as t → ∞ with j � t−1/λ. (3.24)

3.4. MORE GENERAL COAGULATION KERNELS

We consider some more general coagulation kernels, and show that the above analysis remains
applicable. For the general coagulation kernel ai,j = a(ij)α(iβ + jβ) we find the similarity
variable is η = j t1/λ again, with the concentrations cj (t) being given by t−1+(1+2α+β)/λf (η).
The function f (η) is then given by

η

λ

df

dη
−

(
1 − 1 + 2α + β

λ

)
f + Lηλf + a(
α+β + ηβ
α)η

αf

= 1
2a

∫ η

ξ=0
ξαf (ξ)(η − ξ)αf (η − ξ)(ξβ + (η − ξ)β) dξ. (3.25)

Assuming α, β > 0 we find the following asymptotic results hold: for η � 1, f (η) ∼
ηλ−1−2α−βe−Lηλ

, thus

cj (t) ∼ Ajλ−1−2α−βe−Ljλt , as t → ∞ with j � t−1/λ; (3.26)

and f (η) ∼ Bη−1−α when η � 1, thus

cj (t) ∼ Bj 1/λt−1+(α+β)/λ as t → ∞ with j � t−1/λ. (3.27)

In the case of diffusion-controlled growth of supported metal crystallite, the aggregation
kernel is ai,j = i−β + j−β , with β = 2/3. In this case, following an analysis similar to
that presented above, we obtain the similarity solution cj ∼ t (1−λ−β)/λf (η) with η = j t1/λ.
For small η the asymptotic solution is f (η) ∼ Aηq exp(−Lηλ + λa
0η

−β/β) with q =
β + λ − 1 − λa
−β , implying

cj (t) ∼ Ajqt1/λ−a
−β exp

(
−Ljλt + λa
0

βjβtβ/λ

)
as t →∞ with j � t−1/λ.

(3.28)

However, in the application we are concerned with here, which is a stirred chamber, the case
of aggregation in a linear shear-velocity profile is perhaps more relevant. This corresponds to
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Figure 5. Graph of the similarity function f (η)/f (ηc) against log η for small η; for the kernels ai,j = 1 (on the
right), ai,j = i + j (in the centre), ai,j = ij (on the left).

ai,j = (i1/3 + j 1/3)3, and so, following an analysis similar to the above, we find the similarity
solution cj (t) = t−1+2/λf (j t1/λ), where the distribution f (η) is given by f (η) ∼ Aηpe−Lηλ

as t → ∞ for j � t−1/λ; here the constants A,p must satisfy p = λ − 2 − λa
1 where
λ < 0 and 
1 = ∫ ∞

0 ξf (ξ) dξ .

3.5. SMALL-η RESULTS

For each of the kernels considered above, the small-η asymptotics have the form f (η) =
Aηqe−Lηλ

with q < 0. This has the form of a single-humped function, with maximum at
ηc = (q/λL)1/λ. Thus, provided this occurs at ηc � 1, the form of the similarity solution will
also be single-humped, the maximum having amplitude f (ηc) = Aqe−q/λ/λL. The form of
such functions is illustrated in Figure 5, where results are shown for the case L = 1, a = 1,

0 = 1, 
1 = 1·2, λ = −0·25.

4. Match to experimental results

The exact solutions given in Section 2 did not have the form observed in the numerical
simulations of Gudmundsson (see [12] and [18]). One reason for this may be the differ-
ences in the kernel used; in numerical work, Gudmundsson used the more accurate kernel
ai,j = 2 + (i/j)1/3 + (j/i)1/3 for Brownian coagulation, whereas the theory of Section 2
considered the simpler kernels ai,j = a, ai,j = a(i + j). Another reason is that in Sec-
tion 2 we only considered λ = 0, whereas Gudmundsson took λ = 2/3 in his numerical
simulations. Finally, for algebraic simplicity we used monodisperse initial data (2.5), whereas
more-complex initial data were considered by Gudmundsson. We would have to resort to
numerical techniques to solve most of the more accurate cases; however, more-complicated
initial data can be handled by the generating-function method of Section 2 and a solution
still obtained. In this section we specify a more general form of initial data, for example, a
single-humped size distribution as given by

cj (0) = Aje−jξ , (4.1)

for some ξ . The maximum of this distribution occurs at j = 1/ξ . Using such initial data, we
can still apply the exact method of solution outlined in Section 2, although the algebra is more
complicated.
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The initial data for the system are

C(z, 0) = A ez+ξ

(ez+ξ − 1)2
, M0(0) = Aeξ

(eξ − 1)2
, (4.2)

where M0 is the number of clusters, and the mass M1 is initially given by M1(0) = −Cz(0, 0) =
Aeξ (eξ + 1)/(eξ − 1)3. Solving (2.3) for the number of clusters we find

M0(t) = 2LM0(0)

(2L + aM0(0))eLt − aM0(0)
. (4.3)

The kinetic equation (2.2) can then be solved, by using the transformation w = 1/C which
linearises the problem and so can be solved by standard methods, which yield

C(z, t) = α

β(ez+ξ − 2 + e−z−ξ ) − γ
, (4.4)

where

α = 4AL2(aM0(0) + 2L)eLt

[aM0(0)(eLt − 1) + 2LeLt ] (4.5)

β = (aM0(0) + 2L)[aM0(0)(eLt − 1) + 2LeLt ] (4.6)

γ = aA(eLt − 1)(aM0(0) + 2L). (4.7)

From this we obtain the explicit solution

ck(t) =


α

β

(k−1)/2∑
j=0

(
k−j−1

j

)
(−1)j

(
2 + γ

β

)m−2j−1

e−kξ , k odd,

α

β

(k−2)/2∑
j=0

(
k−j−1

j

)
(−1)j

(
2 + γ

β

)m−2j−1

e−kξ , k even.

(4.8)

To assess how the width of the distribution varies in time, we calculate the standard deviation
of the distribution σ = √

((M2M0 − M2
1 )/M2

1 ). This is determined by

σ 2 = 1
2 sech2( 1

2ξ)

[
1 + aA(eLt − 1) cosh ξ

aA(eLt − 1) + 8LeLt sinh2 1
2ξ

]
. (4.9)

This grows from its initial value of 1
2 sech2( 1

2ξ) and reaches a finite width in the large-time
limit. The form of the resultant distribution and its evolution in time is illustrated in Figure 6.
This shows very similar to the results shown in [12, Figures 4.42, 4.43], namely, that the peak
rapidly decreases in amplitude, and spreads to become a wide distribution, while its maximum
hardly moves at all.

5. Conclusions

We have considered a variety of aggregation kernels which permit exact explicit solutions
to be derived in the pure-aggregation case. To these coagulation equations we have added a
general mass-loss term. In the case of size-independent mass-loss rates, explicit solutions are
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Figure 6. Plots of the distribution (4.8) in the case L = 1, a = 1, ξ = 0·15, A = 1. The concentration ck(t) is
plotted against aggregation size k for times from t = 0 to t = 0·1 in steps of size t = 0·01.

still available, and we have derived these in Section 2. Due to the presence of stirring in the
system under consideration here, fractal clusters observed in Diffusion-Limitted Aggregation
(DLA) do not play an important role in the kinetics of growth analysed here; instead more
compact aggregates are found [12].

The most interesting of these cases is the kernel ai,j = aij , for which gelation is known to
exist in the mass-conserving case. With a mass-loss term present, we find that the existence of
a gelation transition depends on the strength of the mass-loss term. For small mass-loss terms,
the gelation phenomenon persists, albeit with the gelation time delayed due to the presence
of the mass-loss term. For stronger mass-loss terms, gelation is completely removed from the
system. Our analysis precisely determines how strong the mass-loss term should be to prevent
gelation.

When the mass-loss term is allowed to be size-dependent, explicit solutions are no longer
available, and instead, we have sought similarity solutions. These have been found in the cases
where mass-loss decreases with increasing size; in particular, in Section 3.4 we examined the
case of a loss term of the form L(cj ) = Ljλcj with λ < 0, for which similarity solutions have
the form cj (t) = t−1+(1+2α+β)/λf (j t1/λ), where the aggregation kernel is ai,j = a(ij)α(iβ +
jβ).

The explicitly solvable case, λ = 0, shows no self-similar behaviour and so we postulate
that, in the case λ > 0, similarity solutions also fail to exist. However, for λ = 0 and ai,j = a,
a solution for the cluster–distribution function has been found and fitted to an initial cluster-
size distribution function containing a single hump. An explicit solution for t > 0 was then
derived. The single-humped form of solution is seen to persist for small times, with the po-
sition of the hump staying almost static, the distribution becoming smaller in amplitude as
mass is lost from the system, and much broader as aggregation creates clusters of larger sizes.
This is in agreement with the numerical results of Gudmundsson for a system modelling the
evolution under agglomeration of an initially single-humped distribution of TiB2 particles in
molten aluminium [12, 18].
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